FORD'S USE OF DRIVING SIMULATOR TECHNOLOGY FOR AUTOMATED DRIVING FEATURE DEVELOPMENT

September 5-7, 2018

Mike Blommer Technical Leader VIRTTEX driving simulator

DSC 2018 EUROPE VR

DRIVING SIMULATION & VIRTUAL REALITY CONFERENCE & EXHIBITION

Agenda

- Driving Simulators at Ford
- Driver Research Methods, Levels of Autonomy
- L2, L4 Studies Conducted in VIRTTEX
 - Overview
 - Simulating Automated Driving Features
 - Motion Scaling and Motion Drive Algorithms
 - Examples

Driving Simulators at Ford

Early 1990s

Today

Driving Simulators at Ford

Static NVH Simulator SQ & P/T NVH design/evaluation

Dynamic Driving Simulator (2013)

- Vehicle Dynamics technology exploration and tuning
- Basic ADAS feature reviews
- Suspension studies

M. Blommer, Ford Motor Company

Driving Simulators at Ford

VIRTTEX VIRtual Test Track EXperiment

Displays

360°
 Field-of-View

Inside VIRTTEX

- Realistic sound cues
- Steering feedback

		Acceleration	Velocity	Displacement
	Longitudinal/ Lateral	> 0.6g	> 1.2m/s	± 1.6m
	Vertical	1.0g	1.0m/s	± 1.0 m
5	Pitch/ Roll	> 200deg/s ²	> 20deg/s	± 20 deg
	Yaw	> 200deg/s ²	> 20deg/s	±40 deg

Driver Research Methods

Higher

Behavior

Knowledge

Naturalistic Data Collection

 Sampled People, Real Cars, Real Roads (Focus on *Today*)

Field Operational Tests

 Sampled People, Modified Cars, Real Roads (Focus on *Tomorrow*)

Driving Simulation

 Sampled People, Virtual Cars, Virtual Roads (Focus on *Today*, *Tomorrow* and *Beyond*)

Lower

Performance

DSC 2018 EUROPE VR

SAE Level	Name	Narrative Definition	Execution of Steering and Accel	Monitoring	Fallback	Driving Modes		
Human driver monitors the driving environment								
0	No Automation	 The full-time performance by the human driver 	Human driver	Human driver	Human driver	n/a		
1	Drive Assistance	 Driving mode-specific execution by a driver assistance system of <i>either steering <u>or</u> acceleration/deceleration</i> Human driver performs all remaining aspects of the dynamic driving task 	Human driver and system	Human driver	Human driver	Some driving modes		
2	Partial Automation	 Driving mode-specific execution by a driver assistance system of <i>steering <u>and</u> accel/decel</i> Human driver performs all remaining aspects of the dynamic driving task 	System	Human driver	Human driver	Some driving modes		
Automated driving system monitors the driving environment								
3	Conditional Automation	 Driving mode-specific performance by an automated driving system of all aspects of the driving task <i>Human driver will respond appropriately to a request to intervene</i> 	System	System	Human driver	Some driving modes		
4	High Automation	 Driving mode-specific performance by an automated driving system of all aspects of the driving task Even if a human driver does not respond appropriately to a request to intervene 	System	System	System	Many driving modes		
5	Full Automation	 Full-time performance by an automated driving system of all aspects of the dynamic driving task under all roadway and environmental conditions that can be managed by a human driver 	System	System	System	All driving modes		

https://en.wikipedia.org/wiki/Autonomous_car

LO-L1 Safety Studies in VIRTTEX

Types of studies

- Driver distraction
- Alerts for
 - Lane Departure Warning (LDW)
 - Forward Collision Warning (FCW)
- Drowsy driver

Study Results

- Quantitative/Objective data
 - E.g., brake/steer reaction times
- Subjective data

L2, L4 Studies in VIRTTEX

Driver Performance

- <u>Driver take-over / re-engagement</u> and <u>Driver</u>
 <u>Controllability</u> to safety relevant event
 - External event (example: surprise forward collision event)
 - AV system event (example: sub-system fault)
- <u>Distraction Mitigation</u> Keeping drivers in the loop

Comprehension

- <u>Driver take-over / re-engagement</u> for L2 strategy
- <u>Situational Awareness</u> How much information should be presented to the driver...
 - ... about the driving environment?
 - ... about what the vehicle senses?

Various techniques to simulate Automated Driving Features

Method	Advantages	Disadvantages		
Ford-specific models (MIL)	• Use (Simulink) model that is planned for the Feature	 Model often not fully developed/debugged 		
"Autonomous mode" in scenario simulation software	 Use when general AV/ADAS capability is needed 	 Can require "tuning", particularly with motion- based simulators 		
Playback of a recorded drive	 Use when existing simulation technology doesn't exist, or When a simulator driver can create a drive that will feel realistic and stay within the motion system capabilities. 	 Can require many recording to get the one that is "just right" 		
M Plammar Ford Matar				

Motion scale must match the scenario under test

- Lateral motion generally scaled above 50%
 - Driver can feel <u>Feature Lateral Control</u> (e.g., lane-keeping)
 - <u>Driver Lateral Control</u> is more realistic [e.g., DSC-NA 2001 "The Effect of Lateral Motion Cues During Simulated Driving", Greenberg, Artz, Cathey]

- Longitude motion generally scaled above 40%
 - Driver can feel <u>Feature Longitude Control</u> (e.g., headway maintenance)

11

Driver Longitude Control is challenging (next slide)

- Classical Motion Drive Algorithm for longitude
- K_x = scale factor applied to specific force
 - Typically reduced to contain expected worst-case longitudinal motion

M. Blommer, Ford Motor Company

Motion Scale: Mixed Longitudinal Scaling

- Example: Automated Driver Feature and Driver Mixed With Driver Braking
 - Automated Feature typically < 0.1 g
 - Driver braking typically > 0.3 g for 1-2 seconds

Conflicting Goals:

- 1. Minimize motion scaling for Driver braking (Minimize motion limiting)
- 2. Maximize motion scaling for Feature (Feel headway maintenance)

Typical global longitudinal scaling in VIRTTEX is < 0.2 for sustained, hard braking

- Goal (1) is met; no motion limiting.
- Goal (2) is not met. Driver experiences < 0.02 g

Solutions: Different Scales for Driver and Feature

- 1. [E.g., DSC 2008 "Motion control techniques for subjective testing in motion-based driving simulators," Blommer, Greenberg]
- 2. Scale = FeatureScale * [FeatureOn] +
 - DriverScale * [1 FeatureOn]

Example:

M. Blommer, Ford Motor Company

Common Characteristics Across Studies

Representative driving conditions

- Interstate driving, 60-70mph
- Suburban/Rural driving, 35/55 mph
- For Driver Performance Studies: Use alternate reason for study purpose.
 - Don't tell participant about safety-critical event

Secondary Task (Distraction Task):

- Visual distractions
- Manual-visual distractions (e.g., tablet games)

DSC 2018 EUROPE VR

M. Blommer, F Company

- Scenario is designed to expose drivers to representative motion, visuals, sounds, etc
 - Example: Motion deceleration/acceleration as adapting to lead vehicle speeds
 - Driver Performance Studies: Scenario of safety-critical event looks similar to earlier parts of the drive

Study minimally-trained drivers

- Trained on general operation of system both before drive, and first part of the drive.
- No training or description of critical take-over / re-engagement systems
- Driver's typically experience one safety-critical event at end of the drive. Can only surprise drivers once!!

L2 Driver re-engagement to a surprise, safety-critical event

Study Factors

- Automated Driving Feature strategy
- Secondary tasks
- Measurements
 - Eyes-off-road times
 - Driver response time

Key simulation methods

- Automation simulated by combination of Ford-specific and Scenario software
- Mixed longitudinal scaling
 - Automated Driving Feature provides initial deceleration cue at onset of safety-critical event
 - Driver response likely to have large deceleration

M. Blommer, Ford Motor

Company

Ford Go Further

L2 Driver Performance For System Fault

- Host vehicle in right lane, approaches guardrail and Jersey barriers (1-3)
- System fault triggered while vehicle has Jersey barriers near the shoulder line (3).

NOTE: Guardrail and Jersey barrier appear earlier in the drive with no system fault.

Key simulation methods

- Automation simulated by combination of Ford-specific and Scenario software
- Key Simulator motions === Key Vehicle motions
 - lateral kinematics, steering wheel angle, etc

Example: Trust in Automation as function of Situational Awareness Displays in L4

Key simulation methods

- Automation simulated by playback of recorded drive
 - Multiple starts/stops, lane changes
- Scenario was deterministic

Thank You