FORD'S USE OF DRIVING SIMULATOR TECHNOLOGY FOR AUTOMATED DRIVING FEATURE DEVELOPMENT

September 5-7, 2018

Mike Blommer
Technical Leader
VIRTTEX driving simulator
Agenda

- Driving Simulators at Ford
- Driver Research Methods, Levels of Autonomy
- L2, L4 Studies Conducted in VIRTTEX
 - Overview
 - Simulating Automated Driving Features
 - Motion Scaling and Motion Drive Algorithms
 - Examples
Driving Simulators at Ford

Early 1990s → Today

M. Blommer, Ford Motor Company
Driving Simulators at Ford

Static HMI Simulators

Static NVH Simulator
SQ & P/T NVH design/evaluation

Dynamic Driving Simulator (2013)
- Vehicle Dynamics technology exploration and tuning
- Basic ADAS feature reviews
- Suspension studies

M. Blommer, Ford Motor Company
Driving Simulators at Ford

VIRTTEX

VIRtual Test Track EXperiment

Displays
- 360° Field-of-View

Inside VIRTTEX
- Realistic sound cues
- Steering feedback

M. Blommer, Ford Motor Company

<table>
<thead>
<tr>
<th></th>
<th>Acceleration</th>
<th>Velocity</th>
<th>Displacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal/ Lateral</td>
<td>> 0.6g</td>
<td>> 1.2m/s</td>
<td>± 1.6m</td>
</tr>
<tr>
<td>Vertical</td>
<td>1.0g</td>
<td>1.0m/s</td>
<td>± 1.0m</td>
</tr>
<tr>
<td>Pitch/ Roll</td>
<td>> 200deg/s²</td>
<td>> 20deg/s</td>
<td>± 20 deg</td>
</tr>
<tr>
<td>Yaw</td>
<td>> 200deg/s²</td>
<td>> 20deg/s</td>
<td>± 40 deg</td>
</tr>
</tbody>
</table>
Driver Research Methods

- **Naturalistic Data Collection**
 - Sampled People, Real Cars, Real Roads (Focus on *Today*)

- **Field Operational Tests**
 - Sampled People, Modified Cars, Real Roads (Focus on *Tomorrow*)

- **Driving Simulation**
 - Sampled People, Virtual Cars, Virtual Roads (Focus on *Today, Tomorrow and Beyond*)

M. Blommer, Ford Motor Company

Higher

Behavior

Knowledge

Performance

Certainty

Lower
<table>
<thead>
<tr>
<th>SAE Level</th>
<th>Name</th>
<th>Narrative Definition</th>
<th>Execution of Steering and Accel</th>
<th>Monitoring</th>
<th>Fallback</th>
<th>Driving Modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No Automation</td>
<td>• The full-time performance by the human driver</td>
<td>Human driver</td>
<td>Human driver</td>
<td>Human driver</td>
<td>n/a</td>
</tr>
<tr>
<td>1</td>
<td>Drive Assistance</td>
<td>• Driving mode-specific execution by a driver assistance system of either steering or acceleration/deceleration • Human driver performs all remaining aspects of the dynamic driving task</td>
<td>Human driver and system</td>
<td>Human driver</td>
<td>Human driver</td>
<td>Some driving modes</td>
</tr>
<tr>
<td>2</td>
<td>Partial Automation</td>
<td>• Driving mode-specific execution by a driver assistance system of steering and accel/decel • Human driver performs all remaining aspects of the dynamic driving task</td>
<td>System</td>
<td>Human driver</td>
<td>Human driver</td>
<td>Some driving modes</td>
</tr>
<tr>
<td>3</td>
<td>Conditional Automation</td>
<td>• Driving mode-specific performance by an automated driving system of all aspects of the driving task • Human driver will respond appropriately to a request to intervene</td>
<td>System</td>
<td>System</td>
<td>Human driver</td>
<td>Some driving modes</td>
</tr>
<tr>
<td>4</td>
<td>High Automation</td>
<td>• Driving mode-specific performance by an automated driving system of all aspects of the driving task • Even if a human driver does not respond appropriately to a request to intervene</td>
<td>System</td>
<td>System</td>
<td>System</td>
<td>Many driving modes</td>
</tr>
<tr>
<td>5</td>
<td>Full Automation</td>
<td>• Full-time performance by an automated driving system of all aspects of the dynamic driving task under all roadway and environmental conditions that can be managed by a human driver</td>
<td>System</td>
<td>System</td>
<td>System</td>
<td>All driving modes</td>
</tr>
</tbody>
</table>

https://en.wikipedia.org/wiki/Autonomous_car
L0-L1 Safety Studies in VIRTTEX

- **Types of studies**
 - Driver distraction
 - Alerts for
 - Lane Departure Warning (LDW)
 - Forward Collision Warning (FCW)
 - Drowsy driver

- **Study Results**
 - Quantitative/Objective data
 - E.g., brake/steer reaction times
 - Subjective data
L2, L4 Studies in VIRTTEX

- **Driver Performance**
 - Driver take-over / re-engagement and Driver Controllability to safety relevant event
 - External event (example: surprise forward collision event)
 - AV system event (example: sub-system fault)
 - **Distraction Mitigation** – Keeping drivers in the loop

- **Comprehension**
 - Driver take-over / re-engagement for L2 strategy
 - **Situational Awareness** – How much information should be presented to the driver...
 - ... about the driving environment?
 - ... about what the vehicle senses?
Various techniques to simulate Automated Driving Features

<table>
<thead>
<tr>
<th>Method</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ford-specific models (MIL)</td>
<td>• Use (Simulink) model that is planned for the Feature</td>
<td>• Model often not fully developed/debugged</td>
</tr>
<tr>
<td>“Autonomous mode” in scenario simulation software</td>
<td>• Use when general AV/ADAS capability is needed</td>
<td>• Can require “tuning”, particularly with motion-based simulators</td>
</tr>
<tr>
<td>Playback of a recorded drive</td>
<td>• Use when existing simulation technology doesn’t exist, or</td>
<td>• Can require many recording to get the one that is “just right”</td>
</tr>
<tr>
<td></td>
<td>• When a simulator driver can create a drive that will feel realistic and stay within the motion system capabilities.</td>
<td></td>
</tr>
</tbody>
</table>
Motion Scale

- Motion scale must match the scenario under test
 - Lateral motion generally scaled above 50%
 - Driver can feel Feature Lateral Control (e.g., lane-keeping)
 - Driver Lateral Control is more realistic [e.g., DSC-NA 2001 “The Effect of Lateral Motion Cues During Simulated Driving”, Greenberg, Artz, Cathey]
 - Longitude motion generally scaled above 40%
 - Driver can feel Feature Longitude Control (e.g., headway maintenance)
 - Driver Longitude Control is challenging (next slide)
- Classical Motion Drive Algorithm for longitude
- $K_x = \text{scale factor applied to specific force}$
 - Typically reduced to contain expected worst-case longitudinal motion
Motion Scale: Mixed Longitudinal Scaling

- **Example: Automated Driver Feature and Driver Mixed With Driver Braking**
 - Automated Feature typically < 0.1 g
 - Driver braking typically > 0.3 g for 1-2 seconds

- **Conflicting Goals:**
 1. Minimize motion scaling for Driver braking (Minimize motion limiting)
 2. Maximize motion scaling for Feature (Feel headway maintenance)

- **Typical global longitudinal scaling in VIRTTEX is < 0.2 for sustained, hard braking**
 - Goal (1) is met; no motion limiting.
 - Goal (2) is not met. Driver experiences < 0.02 g
Motion Scale: Mixed Longitudinal Scaling

- **Solutions: Different Scales for Driver and Feature**
 1. [E.g., DSC 2008 “Motion control techniques for subjective testing in motion-based driving simulators,” Blommer, Greenberg]
 2. \(\text{Scale} = \text{FeatureScale} \times \text{FeatureOn} + \text{DriverScale} \times [1 - \text{FeatureOn}] \)

- **Example:**

 ![Graph showing motion scale examples]
 - Manual Driving: DriverScale = 0.17
 - Automated Feature: FeatureScale = 0.6
Common Characteristics Across Studies

- **Representative driving conditions**
 - Interstate driving, 60-70mph
 - Suburban/Rural driving, 35/55 mph

- **For Driver Performance Studies: Use alternate reason for study purpose.**
 - Don’t tell participant about safety-critical event

- **Secondary Task (Distraction Task):**
 - Visual distractions
 - Manual-visual distractions (e.g., tablet games)

M. Blommer, Ford Motor Company
Common Characteristics Across AV Studies

- **Scenario is designed to expose drivers to representative motion, visuals, sounds, etc**
 - Example: Motion deceleration/acceleration as adapting to lead vehicle speeds
 - Driver Performance Studies: Scenario of safety-critical event looks similar to earlier parts of the drive

- **Study minimally-trained drivers**
 - Trained on general operation of system both before drive, and first part of the drive.
 - No training or description of critical take-over / re-engagement systems
 - Driver’s typically experience one safety-critical event at end of the drive. Can only surprise drivers once!!
L2 Driver re-engagement to a surprise, safety-critical event

Study Factors
- Automated Driving Feature strategy
- Secondary tasks

Measurements
- Eyes-off-road times
- Driver response time

Key simulation methods
- Automation simulated by combination of Ford-specific and Scenario software
- Mixed longitudinal scaling
 - Automated Driving Feature provides initial deceleration cue at onset of safety-critical event
 - Driver response likely to have large deceleration
Host vehicle in right lane, approaches guardrail and Jersey barriers (1-3)

System fault triggered while vehicle has Jersey barriers near the shoulder line (3).

NOTE: Guardrail and Jersey barrier appear earlier in the drive with no system fault.

Key simulation methods

- Automation simulated by combination of Ford-specific and Scenario software
- Key Simulator motions === Key Vehicle motions
 - lateral kinematics, steering wheel angle, etc
Example: Trust in Automation as function of Situational Awareness Displays in L4

Key simulation methods

- Automation simulated by playback of recorded drive
 - Multiple starts/stops, lane changes
- Scenario was deterministic
Thank You